
The Ivy Java library guide

CENA NT02-819

Yannick Jestin
jestin@cena.fr

Copyright © 2005 DGAC/DSNA/DTI

Copyright © 2005 DGAC/DSNA/DTI

This document is a programmer’s guide that describes how to use the Ivy Java library to connect
applications to an Ivy bus. This guide describes version 1.2.8 of the library. This document itself
is part of the Java package, available on the Ivy web site (http://www.tls.cena.fr/products/ivy/).

1. Foreword

This document was written in SGML according to the DocBook DtD, so as to be able to generate PDF
and html output. However, the authors have not yet mastered the intricacies of SGML, the DocBook
DtD, the DocBook Stylesheets and the related tools, which have achieved the glorious feat of being far
more complex than LaTeX and Microsoft Word combined together. This explains why this document, in
addition to being incomplete, is quite ugly. We’ll try and improve it.

2. What is Ivy?

Ivy is a software bus designed at CENA (http://www.cena.fr/). A software bus is a system that allows
software applications to exchange information with the illusion of broadcasting that information,
selection being performed by the receiving applications. Using a software bus is very similar to dealing
with events in a graphical toolkit: on one side, messages are emitted without caring about who will
handle them, and on the other side, one decide to handle the messages that have a certain type or follow a
certain pattern. Software buses are mainly aimed at facilitating the rapid development of new agents, and
at managing a dynamic collection of agents on the bus: agents show up, emit messages and receive some,
then leave the bus without blocking the others.

1

NT02-819 © CENA

Ivy is implemented as a collection of libraries for several languages and platforms. If you want to read
more about the principles Ivy before reading this guide of the Java library, please refer to The Ivy
software bus: a white paper. If you want more details about the internals of Ivy, have a look at The Ivy
architecture and protocol. And finally, if you are more interested in other languages, refer to other guides
such as The Ivy Perl library guide (not yet written), or The Ivy C library guide. All those documents
should be available from the Ivy Web site (http://www.tls.cena.fr/products/ivy/).

3. The Ivy Java library

3.1. What is it?

The Ivy Java library (aka libivy-java or fr.dgac.ivy) is a Java package that allows you to connect
applications to an Ivy bus. You can use it to write applications in Java. You can also use it to integrate
any thread-safe Java application on an Ivy bus. So far, this library has been tested and used on a variety
of Java virtual machines (from 1.1.7 to 1.4.2), and on a variety of architectures (GNU/Linux, Solaris,
Windows NT,XP,2000, MacOSX).

The Ivy Java library was originally developed by François-Régis Colin and is now maintained by
Yannick Jestin at CENA within a group at CENA (Toulouse, France).

3.2. Getting and installing the Ivy Java library

You can get the latest versions of the Ivy C library from the Ivy web site
(http://www.tls.cena.fr/products/ivy/). It is packaged either as a jar file or as a debian package. We plan
to package it according to different distribution formats, such as .msi (Windows) or .rpm (Redhat and
Mandrake linux). Contributors are welcome for package management.

The package is mainly distributed as a jar file. In order to use it, either add it in your CLASSPATH
environment variable, put the it in your $JAVA_HOME/jre/lib/ext/ directory, or C:\Program
Files\JavaSoft\... for Windows. The best way to avoid mistakes is to put it in the command line each time
you want to use ivy $ java -classpath .:/path/to/ivy.jar:/path/to/regexp.jar:/path/to/getopt.jar
className

The package contains the documentation, the sources and the class files for the fr.dgac.ivy package,
alongside with examples and a couple of useful tools, IvyDaemon and Probe. You will need the Apache
Jakarta project regexp library (http://jakarta.apache.org/regexp/) and the gnu getopt library
(http://www.urbanophile.com/arenn/coding/download.html). Those could be included in the jar file, but
not in the debian package.

In order to test the presence of Ivy on your system once installed, run the following command:

2

NT02-819 © CENA

$ java fr.dgac.ivy.tools.Probe

If should display a line about broadcasting on a strange address, this is OK and means it is ready and
working. If it complains about a missing class (java.lang.NoClassDefFoundError), then you have not
pointed your virtual machine to the jar file or your installation is incomplete. Alternatively, you can use
the jprobe shell script.

4. Your first Ivy application

We are going to write a "Hello world translater" for an Ivy bus. The application will subscribe to all
messages starting with the "Hello" string, and re-emit them on the bus having translated "Hello" into
"Bonjour" (Hello in french). In addition, the application will quit as soon as it receives a "Bye" message.

4.1. The code

Here is the code of "ivyTranslater.java":

import fr.dgac.ivy.* ;

class ivyTranslater implements IvyMessageListener {

private Ivy bus;

ivyTranslater() throws IvyException {
// initialization, name and ready message
bus = new Ivy("IvyTranslater","IvyTranslater Ready",null);
// classical subscription
bus.bindMsg("^Hello(.*)",this);
// inner class subscription (think awt)
bus.bindMsg("^Bye$",new IvyMessageListener() {
public void receive(IvyClient client, String[] args) {

// leaves the bus, and as it is the only thread, quits
bus.stop();

}
});
bus.start(null); // starts the bus on the default domain

}

// callback associated to the "Hello" messages"
public void receive(IvyClient client, String[] args) {
try {
bus.sendMsg("Bonjour"+((args.length>0)?args[0]:""));

} catch (IvyException ie) {
System.out.println("can’t send my message on the bus");

}
}

3

NT02-819 © CENA

public static void main(String args[]) throws IvyException {
new ivyTranslater();

}
}

4.2. Compiling it

You should be able to compile the application with the following command (if the ivy-java jar is in your
development classpath):

$ javac ivyTranslater.java

$

4.3. Testing

We are going to test our application with fr.dgac.ivy.tools.Probe. In a shell, launch ivyTranslater:

$ java ivyTranslater

In another shell, launch java fr.dgac.ivy.tools.Probe ’(.*)’. You can see that the IvyTranslater has joined
the bus, published its subscriptions, and sent the mandatory ready message. As your probe has
subscribed to the eager regexp .* and reports the matched string within the brackets (.*), the ready
message is printed.

$ java fr.dgac.ivy.tools.Probe ’(.*)’

you want to subscribe to (.*)
broadcasting on 127.255.255.255:2010
IvyTranslater connected
IvyTranslater subscribes to ^Bye$
IvyTranslater subscribes to ^Hello(.*)
IvyTranslater sent ’IvyTranslater Ready’

Probe is an interactive program. Type "Hello Paul", and you should receive "Bonjour Paul". Type "Bye",
and the ivyTranslater application should quit to the shell. Just quit Probe, issuing a Control-D (or .quit)
on a line, and Probe exists to the shell.

Hello Paul

-> Sent to 1 peers
IvyTranslater sent ’Bonjour Paul’
Bye

-> Sent to 1 peers
IvyTranslater disconnected
<Ctrl-D>

$

4

NT02-819 © CENA

5. Basic functions

The javadoc generated files are available on line on the ivy web site, and should be included in your ivy
java package (or in /usr/share/doc/libivy-java, alongside with this very manual). Here are more details on
those functions.

5.1. Initialisation an Ivy object and joining the bus

Initialising a Java Ivy agent is a two step process. First of all, you must create an fr.dgac.ivy.Ivy

object. It will be the repository of your agent name, network state, subscriptions, etc. Once this object is
created, you can subscribe to the various Ivy events: text messages through Perl compatible regular
expressions, other agents’ arrival, departure, subscription or unsubscription to regexps, direct messages
or die command issued by other agents. At this point, your ivy application is still not connected. In order
to join the bus, call the start(string domain) method on your Ivy object. This will spawn two
threads that will remain active until you call the stop() method on your Ivy object or until some other
agent sends you a die message. Once this start() method has been called, the network machinery is set
up according to the ivy protocol, and your agent is ready to handle messages on the bus !

fr.dgac.ivy.Ivy(String name,String message, IvyApplicationListener appcb)

This constructor readies the structures for the software bus connexion. It is possible to have more than
one bus at the same time in an application, be it on the same ivy broadcast address or one different ones.
The name is the name of the application on the bus, and will by transmitted to other application, and
possibly be used by them (through String IvyClient.getApplicationName()). The message is
the first message that will be sent to other applications, with a slightly different broadcasting scheme than
the normal one (see The Ivy architecture and protocol document for more information. If message is
null, nothing will be sent. Usually, other application subscribe to this ready message to trigger actions
depending on the presence of your agent on the bus. The appcb is an object implementing the
IvyApplicationListener interface. Its different methods are called upon arrival or departure of other
agents on the bus, or when your application itself leaves the bus, or when a direct message is sent to your
application. It is also possible to add or remove other application listeners using the
Ivy.AddApplicationListener() and Ivy.RemoveApplicationListener() functions.

public void start(String domainbus) throws IvyException

This method connects the Ivy bus to a domain or list of domains. This spawns network managing threads
that will be stropped with Ivy.stop() or when a die message is received. The rendezvous point is the
String parameter domainbus, an UDP broadcast address like "10.0.0:1234" (255 are added at the end to
become an IPv4 UDP broadcast address). This will determine the meeting point of the different
applications. For the gory details, this is done with an UDP broadcast or an IP Multicast, so beware of
routing problems ! You can also use a comma separated list of domains, for instance
"10.0.0.1234,192.168:3456". If the domain is null, the API will check for the property IVY_BUS (set at

5

NT02-819 © CENA

the invocation of the JVM, e.g $ java -DIVY_BUS=10:4567 myApp, or via an environment variable on
older JVMs); if not present, it will use the default bus, which is 127.255.255.255:2010. The default
address requires a broadcast enabled loopback interface to be active on your system (CAUTION, on
MacOSX and some releases of SunOS, the default bus doesn’t work ...). If an IvyException is thrown,
your application is not able to send or receive data on the specified domain.

public void stop()

This methods stops the threads, closes the sockets and performs some clean-up. If there is no other
thread running, the program quits. This is the preferred way to quit a program within a callback (please
don’t use System.exit() before having stopped the bus, even if it works ...). Note that it is still
possible to reconnect to the bus by calling start() once again.

5.2. Emitting messages

Emitting a message is much like echoing a string on a output channel. Portion of the message will be
sent to the connected agent if the message matches their subscriptions.

public int sendMsg(String message)

Will send each remote agent the substrings in case there is a regexp matching. The default behaviour is
not to send the message to oneself ! The result is the number of messages actually sent. The main issue
here is that the sender ivy agent is the one who takes care of the regexp matching, so that only useful
information are conveyed on the network. Be sure that the message sent doesn’t contains protocol
characters: 0x01 to 0x08 and unfortunately 0x0D, the newline character. If you want to send newlines,
see protectNewline, in advanced functions.

5.3. Subscription to messages

Subscribing to messages consists in binding a callback function to a message pattern. Patterns are
described by regular expressions with captures. Since ivy-java 1.2.4, Perl Compatible Regular
Expressions are used, with the Apache Jakarta Project regexp library (see the jakarta regexp web site
(http://jakarta.apache.org/regexp/)). When a message matching the regular expression is detected on the
bus (the matching is done at the sender’s side), the recipient’s callback function is called. The captures
(ie the bits of the message that match the parts of regular expression delimited by brackets) are passed to
the callback function much like options are passed to main. Use the bindMsg() method to bind a
callback to a pattern, and the unbindMsg method to delete the binding.

public int bindMsg(String regexp, IvyMessageListener callback);
public void unBindMsg(int id);

The regexp follows the PCRE syntax (see man pcrepattern(3)), grouping is done with brackets. The
callback is an object implementing the IvyMessageListener interface, with the receive method. The
thread listening on the connexion with the sending agent will execute the callback.

6

NT02-819 © CENA

There are two ways of defining the callback: the first one is to make an object an implementation of the
IvyMessageListener interface, and to implement the public void receive(Ivyclient ic,

String[] args) method. But this is limited to one method per class, so the second method used is the
one of inner classes, introduced since Java 1.1 and widely used in swing programs, for instance:

bindMsg("^a*(.*)c*$", new IvyMessageListener() {
public void receive(IvyClient ic,String[] args) {
... // do some stuff

}
});

The processing of the ivy protocol and the execution of the callback are performed within an unique
thread per remote client. Thus, the callback will be performed sequentially. If you want an asynchronous
handling of callbacks, see in the advanced functions.

5.4. Subscribing to application events

TODO

6. Advanced functions

6.1. Sending to self

By default, an application doesn’t send the messages to itself. Usually, there are more efficient and
convenient ways to communicate withing a program. However, if you want to take benefit of the ease of
ivy or to be as transparent as possible, you can set the Ivy object so that the pattern matching and
message sending will be done for the sender too.

public void sendToSelf(boolean b);
public boolean isSendToSelf();

6.2. Initializing a domain

The default behaviour of an Ivy agent is to accept a command line switch (-b 10:2010, e.g.), and if not
present, to use the IVYBUS property, (given by the -DIVYBUS=10:34567 parameter to the jvm), and,
if not present, to default to Ivy.DEFAULT_DOMAIN. This domain is given as a string ardument to the
Ivy.start() function. To make this logic easier to follow, the Ivy class provides the programmer with two
useful function:

public static String getDomain(String arg);

7

NT02-819 © CENA

public static String getDomainArgs(String progname,String[] args);

The getDomain() function, if arg is non null, will return arg, otherwise it will return the IVYBUS
property, otherwise the DEFAULT_DOMAIN. A very simple way to start an Ivy agent is with
ivy.start(getDomain(null)). The getDomainArgs(name,args) will add very simple processing of the args
given to the main() function, and give higher priority to the command line argument.

6.3. Newline within messages

As we have seen in Ivy.sendMsg(), you can not have newline characters within the string you send on
the bus. If you still want to send messages with newline, you can encode and decode them at the emitter
and receiver’s side. With Ivy.protectNewLine(boolean b), you can set your Ivy object to ensure
encoding and decoding of newlines characters. This is tested and working between Java ivy applications,
but not yet implemented in other ivy libraries. The newlines are replaced by ESC characters (hex 0x1A
). As the encoding and decoding cost a little more CPU and is not yet standardised in the Ivy protocol,
use it at your own risk. We should of course protect the other protocol special characters.

6.4. Sending direct messages

Direct messages is an ivy feature allowing the exchange of information between two ivy clients. It
overrides the subscription mechanism, making the exchange faster (there is no regexp matching, etc).
However, this features breaks the software bus metaphor, and should be replaced with the relevant
bounded. regexps, at the cost of a small CPU overhead. The full direct message mechanism in Java has
been made available since the ivy-java-1.2.3, but it won’t be much documented, in order to make it
harder to use.

6.5. Asynchronous Subscription to messages

For each and every remote agent on the bus, a thread is in charge of handling the encoding and decoding
of the messages and of the execution of the callbacks. Thus, if a callback consumes much time, the rest
of the communication is put on hold and the processing is serialised, eventually leading to a stacking in
the socket buffer and to the blocking of the message sender. To alleviate this, we have set up (since 1.2.4)
an asynchronous subscription, where each and every time a callback is performed, it is done in a newly
created separate thread. As creating a thread is quite expensive, one should use this method for lengthy
callbacks only. Furthermore, to avoid concurrent access to the callback data, the String[] argument
passed on to the callbacks are cloned. This causes an extra overhead.

public int bindMsg(String regexp, IvyMessageListener callback,boolean async);
public int bindAsyncMsg(String regexp, IvyMessageListener callback);

If the async boolean parameter is set to true, a new thread will be created for each callback. The same
unBindMsg() can be called to cancel a subscription.

8

NT02-819 © CENA

6.6. Waiting for someone: waitForClient and waitForMsg

Very often, while developing an Ivy agent, you will be facing the need of the arrival of another agent on
the bus to perform your task correctly. For instance, for your spiffy application to run, a gesture
recognition engine will have to be on the bus, or another data sending application. The Ivy way to do this
is to subscribe to the known agent’s ready message (be sure to subscribe before starting the bus), or to
implement an IvyApplicationListener and change of state in the connect() method. However, it is
often useful to stop and wait, and it is awkward to wait for a variable change.

IvyClient waitForClient(String name, int timeout)
IvyClient waitForMsg(String regexp, int timeout)

These two methods allow you to stop the flow of your main (or other) thread by waiting for the arrival of
an agent, or for the arrival of a message. If the agent is already here, waitForClient will return
immediately. If timeout is set to null, your thread can wait "forever", otherwise it will wait timeout
milliseconds. With waitForMsg, be aware that your subscription can be propagated to the remote agents
after that their message was sent, so that you’d wait for nothing. You had better be sure that the
waitForMsg method is called early enough.

6.7. Subscribing to subscriptions

A very common practice when beginning to play with ivy is to develop an ivy agent monitor (the good
practice is to use the excellent ivymon written in perl by Daniel Etienne). If you want to notity the user
that a remote agent has subscribed or unsubscribed to a regular expression after the protocol handshake,
then your monitor agent has to subscribe to subscriptions. To do so, use the following functions:

public int addBindListener(IvyBindListener callback);
public void removeBindListener(int id)

A IvyBindListener object must implement the following interface:

void bindPerformed(IvyClient client, int id, String regexp);
void unbindPerformed(IvyClient client, int id, String regexp);

For a code sample, see the Probe utility source code. Note that if you have enabled a filter (message
classes), you will be notified the subscriptions even if they are considered useless. If you want to check if
the regexp has a chance to match the message you’re sending, use the boolean
Ivy.CheckRegexp(String regexp).

7. Utilities

7.1. Probe

Probe is your swiss army knife as an Ivy Java developer. Use it to try your regular expressions, to check

9

NT02-819 © CENA

the installation of the system, to log the messages, etc. To use it, either run fr.dgac.ivy.tools.Probe, or run
the jar file directly with $ java -jar ivy.jar

The command line options (available with the -h command line switch) are the following:

• -b allows you to specify the ivy bus. This overrides the -DIVY_BUS Java property. The default value
is 127.255.255.255:2010.

• -n NAME allows you to specify the name of this probe agent on the bus. It defaults to JPROBE, but it
might be difficult to differentiate which jprobe sent which message with a handful of agents with the
same name

• -q allows you to spawn a silent jprobe, with no terminal output

• -s sends to self (default off), allows subscription to its own messages

• -n NEWNAME changes JPROBE default Ivy name to another one, which can prove to be useful when
running different probes

• -t add timestamps to messages

• -d allows you to use JPROBE on debug mode. It is the same as setting the VY_DEBUG property (
java -DIVY_DEBUG fr.dgac.ivy.tools.Probe is the same as java fr.dgac.ivy.tools.Probe -d)

• -c MESSAGECLASS uses a message filter (see Ivy.setFilter()), for example ’Word1,Word2,Word3’

• -h dumps the command line options help.

The run time commands are preceded by a single dot (.) at the beginning of the line. Issue ".help" at the
prompt (without the double quotes) to have the list of available commands. If the lines does not begin
with a dot, jprobe tries to send the message to the other agents, if their subscriptions allows it. The dot
commands are the following

• .die CLIENTNAME issues an ivy die command, presumably forcing the first agent with this name to
leave the bus

• .bye (or .quit) forces the JPROBE application to exit. This is the same as inputting an end of file
character on a single input line (^D).

• .direct client id message sends the direct message to the remote client, using the numeric id

• .bind REGEXP and .unbind REGEXP will change Probe’s subscription

• .list gives the list of clients seen on the ivy bus

• .bound AGENT lists the regexps the AGENT has subscribed to. You can use .bound * to get the whole
list.

• .time COUNT MSG sends the MSG COUNT times and displays the elapsed time

7.2. IvyDaemon

As the launching and quitting of an ivy bus is a bit slow, it is not convenient to spawn an Ivy client each
time we want to send a simple message. To do so, we can use the IvyDaemon, which is a TCP daemon

10

NT02-819 © CENA

sitting and waiting on the port 3456, and also connected on the default bus. Each time a remote
application connects to this port, every line read until EOF will be forwarded on the bus. The standard
port and bus domain can be overridden by command line switches (use $ java
fr.dgac.ivy.tools.IvyDaemon -h). First, spawn an ivy Damon: $ java fr.dgac.ivy.tools.IvyDaemon
then, within your shell scripts, use a short TCP connexion (for instance netcat): $ echo "hello world" |
nc -q 0 localhost 3456 The "hello world" message will be sent on the default Ivy Bus to anyone having
subscribe to a matching pattern

7.3. After

TODO

8. programmer’s style guide

TODO

9. Contacting the author

The Ivy Java library is now maintained by Yannick Jestin. For bug reports or comments on the library
itself or about this document, please send him an email at <jestin@cena.fr>. For comments and ideas
about Ivy itself (protocol, applications, etc), please join and use the Ivy mailing list <ivy@cena.fr>.

If you report a bug, try to identify the causal path leading to the bug, and submit a trace of the problem, if
possible, using the -DIVY_DEBUG property to produce a trace of the ivy execution.

11

